Abstract

The Cache Conflict Analysis Tool takes memory access traces from
an instrumented program and runs them through a cache simulator,
tracking which data structures conflict with each other. We will use
the results of the tool to perform automatic cache conscious data
placement, resulting in increased program performance.

Background

e [he cache location of a data structure is dependent on its loca-
tion In main memory.

e The layout of data (both static and dynamic) in main memory
can dramatically affect cache performance due to conflicts, and
can adversely affect performance of an application.

e Compilers typically do not take cache conflict behavior into ac-
count when creating an executable, nor does the memory subsys-

tem or operating system at time of execution.

e By analyzing cache behavior with this tool, hopefully more opti-
mal data placement can be achieved.

Below is an example of how in a direct mapped 4k cache with a 32 byte blocksize, every 4096th byte in main memory
will map to the same area of cache. So if you have two data structures in use at the same time that are 4096 bytes

apart, both will not fit in the cache at the same time and performance will be adversely affected.

Diagram of a Conflict Miss
Pseudo-code of a Conflict Miss ©

Allocate A[512] (allocated at offset 0) Main Memory
Allocate B[512] (allocated at offset 4096) 0
1 Cache
2 \ 0
Loop i=0..N 3 1
Loop j=0..511 g
Ali|=Al]+B]] 4096 i
4097 |
Without conflicts, A and B should be in the jggg

cache after the first access. Due to conflicts,
each access causes a miss.

A Cache Conflict Analysis Tool

Vincent Weaver, Cornell University
CASC, Martin Schulz

Lawrence Livermore National Laboratory
11 August 2005

Below are some results from running different benchmarks through
the tool, with a simulated cache configuration similar to that of a

Pentium 4 (8K 4-way 64byte L1, 512K 8-way 64byte L2)

equake from the spec2k benchmarks

Conflict by Size L1

RS
+
) 81 4e+
.be+ 2e+
Ade+
.26+

ON PO ——— i)
OOOOM i y'rivor
OO0+
OO0
OO0,
SO

108

Unknow 08
Size going out

. . 180
Size coming In

FIGURE 1: Conflicts by size in the L1
Cache. The biggest peak is that of 24-
byte allocations (corresponding to an ar-
ray of 3 doubles) kicking each other out
of the cache.

Accesses

Conflict Caused by Size 32

Implementation

4e+06

T T T
accesses []
[1 misses

3.5e+06 - 12 misses

eI IENON

3e+06

2.5e+06

2e+06

1.5e+06

1e+06

500000

IOt
IO
\\\\\\\\\\\\\\\\\\\\\
WO a0y 8

HOODIISONT!

O O]
0 5 10 15 20 25 30

Offset

FIGURE 2: Accesses, both total and
those causing misses, for offsets in the 24-
byte allocations (plus 8 bytes of padding
added by the system’s malloc() routine).

smg2k from the ASCI Purple Benchmarks

Conflict by Size L1

6e+06
66406 - 5e+06
5€+O6 B 4e+06
4e+06 | 3e+06
3e+06 - 2e+06
2e+06 - 1e+06
1e+06 0

A ADID) O
Unknoygs FBES
e 248648 5 HFEVSize going out
, 20 STy 43"
Size coming N~ BB ERRRmRIALR
OU"U2E0Y00

FIGURE 3: Conflicts by size in the L1
Cache. The biggest peaks here are from
large allocations (bigger than the cache
size) causing capacity misses.

This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

Accesses

Conflict Caused by Size 272

120000 | |
1] accesses [|
[1 misses

100000 |2 misses i
80000
60000 f | [T
40000 |
20000

0 - :5‘: - I ' L] RIS

Offset

FIGURE 4: Accesses, both total and
those causing misses, for offsets in the
272-byte allocations. The large gap of un-
used space in the middle might open op-
portunities for better cache placement.

[+ Cache Simulation Results for (ufs/vault/vince//linl-work/trace_equake/equake
f File Edit WView Go Bookmarks Tools Help
Program of Interest 2 &0
¢ - B -~ | & | file:/f/home/weav |+| @ Go ||Cl
} L | o
Instrumented to send: Instrumented with FIT ; & :
e Load and Store Addresses (Flexible Instrumentation Toolkit) P Getting Started B Latest Headlines X
° ma//OC,Ca//OC, realloc which is an atom-like tool Allocated Memory Area Conflicts by Ske for L1
and free information 15 distinet sizes, 10426152 total conflicts
P : : . [Unknown | Static [Stack [16/| 20 | 24 || 32 |[s2[1508 [29084 [29198 [58360 [140108 [208872 208876
ad(iLeriser?tngaS;FCe bcigck Runs nat|Ve|y on X86/L|nUX | Ak (L] LU 54522!71 .15&2!!5112!-‘5“] | 40y || AR2 || iy | i (k1] . i) i1y
nknown| (2278 [omi51 (w1 [12730s (12246 [o 15536l 2i0s ([4337 15043 [[a7as) ([5aseg |
data sent via unix fifo (pipe) | sttie [3576 |EH0ES =505 0 ([1eew0 [for (fsms b (o s 2 s [ssi [[ise (e |
[Stk |00 fomass 16798 [0 [posar s [fisssm o o (st o o |[13is [[12749 [24s0s |
- . P o b b R
CaChe ConHICt AnalySIS TOOl [[pr2 s :tm? o :.rm: (18020 [Rosere o (o 1564 [310 (1064 o0 fesss oo |:|
' u m [s |[ss jl. s | [S "”_Jir.,'gi;'; 12235 2577 |[s292 [s .L_"rt
""""""""""" il atrAr)) [om (s 2 [ocor o | SEEEES NEEEEE 0|5 |[27619/3000 | 700w 6325 [543 (45198
! L1 i basic block Size/address [1508 o o :u o :[1 éJm [z o Eu It in 5'—' o :[1
 [ICache L+ L1 DCache simulated using [(29184 Jlaas |poms [see7 [[i [z [[asoon [f@me 1 2 [[is7iffeor [[ros [fos [frmse [f2ss |
! load / store addresses. [20188 |[207 iz o o e [izses ([near (o o |oas (imes Gr o s sz
.+ A list of memory areas [0 a0 pa o [jp |20 [psias [psoes o o [l Jfaos [pese o ot s |
|_2 : is generated from [10108 ([oo a0 [jo [fmeo [l [Rzise Jo o [pmz Jo o [[rus |[iezs 1733 |
C 3 Ch e : malloc and symbol info. [20072 1526 [[1o73% |[faass][o |77 |[1260u |[15762 [0 [0 [fwos 122 (7 ([|[aser 5197 |
| L1 .+ Memory is divided into [20m76 1503 |[Lion |[154m0]fo 27350 [[iooss |[1asma o (o [f7es [[lio (319 (1257 [[2oome [[saed |
" IDCache | 1k chunks and entered
| | into a hash table.
| '+ There is a separate hash
! for finding size
_________________________________ specific stats.
memory size sizes
memaory area
hash y hash | »
. (IR
name size L
Inumber o
address address L
segment o
freed | sl
aCcesses '-\a-'t-'-:': -
misses
size \ \
[+ |
- . . El Find: {21 Find Next 2 Find Previous Highlight [] Match ci
+ Conflict and access info is T
categor_lzed by callsites L1, L2 conflictsL1, L2 misses :
block size.
Memory access info is collected from the pro-
gram on the fly, run through a cache simu-
lator, and various statistics are recorded. Results are presented as HTML with graph-
ICS.

e Implement automatic cache-conscious data placement:

+ by hand through code organization

+ automatically at runtime via customized memory management

+ using hardware remapping mechanisms (such as IMPULSE)

e Enable instrumentation by atom or valgrind in addition to FIT.
e Instrument more benchmarks.

